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1 Conditional Expectation

• Projection Thm for Hilbert Space

– If E is a Hilbert space and M ⊂ E is closed and convex, then for any y ∈ E,
∃ a unique w ∈M s.t. ‖y − w‖ = d(y,M) := inf{‖y − v‖ : v ∈M}.
Denote it as w = projMy i.e. w is a projection of y onto M .

– If E is a Hilbert space and M ⊂ E is a closed vector subspace, then for any y ∈ E,

i. ∃ a unique decomposition y = w + v with w = projMy ∈M and v ∈M⊥

ii. For w ∈M , w = projMy ⇔ 〈y − w, z〉 = 0 ∀ z ∈M

* L2 := { Random Variable X : E(X2) =
∫
X2 dP <∞}

√
If X ∈ L2 then E|X| <∞ i.e. every element of L2 is integrable.

F Trick : |X| ≤ X2 + 1
4

√
L2 is a vector space

F Trick : inequality (aX + bY )2 ≤ 2(a2X2 + b2Y 2)

• L2 is a Hilbert space with inner product 〈X, Y 〉 = E(XY )

F Trick : Cauchy seq. having a subseq. converging to a point converges to the point.

• Lemma for proving L2 is a complete normed space.

– If {Xn} ⊂
seq
L2 and ‖Xn −Xn+1‖ ≤ 2−n ∀n ∈ N then ∃X ∈ L2 s.t. Xn → X a.s. and

‖Xn −X‖ → 0 i.e. Xn → X in L2.

F Lemma : If a random varaible Z satisfies Z ≥ 0 and E(Z) <∞ then Z <∞ a.s.

* For X ∈ L2, L2(X) := {g(X) | g : R→ R is a Borel function, E[(g(X))2] <∞}
√

For X ∈ L2, L2(X) is a vector subspace of L2.

• For X ∈ L2, L2(X) is a closed vector subspace of L2 so that L2(X) is also a Hilbert space.

* Geometric definition for conditional expectation

– For X, Y ∈ L2, define E[Y |X] = ProjL2(X)Y

– E[Y |X] = g(X) a.s. for some Borel function g

– ‖Y − E[Y |X]‖ = minh(X)∈L2(X) ‖Y − h(X)‖
i.e. E[(Y − E[Y |X])2] ≤ E[(Y − h(X))2] ∀ h(X) ∈ L2

– For g(X) ∈ L2(X), g(X) = E[Y |X]⇔ 〈Y − g(X), h(X)〉 = 0 ∀ h(X) ∈ L2

⇔ E[(Y − g(X))h(X)] = 0 ∀ h(X) ∈ L2

• Elementary properties of conditional expectation from geometric definition

– If X, Y, Z ∈ L2 then the followings are true.

i. E[c|X] = c a.s. ∀ c ∈ R
ii. E[αY + βZ|X] = αE[Y |X] + βE[Z|X] ∀α, β ∈ R
iii. E[Y |X] = E[Y ] if X and Y are independent.
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iv. E[g(X)Y |X] = g(X)E[Y |X] if g satisfies g(X) ∈ L2(X) and supx |g(x)| <∞
v. E[E[Y |X]] = E[Y ]
√

In fact, the additional assumption about boundedness of g in (iv) is not necessary.
We will see later.

• Extending the definition from L2 to all integrable functions

E[{Y − E[Y |X]}I(X ∈ A)] = 0 ∀ A ∈ B(R) ∵ I(X ∈ A) ∈ L2(X)∫
(X∈A)

Y dP =

∫
(X∈A)

E[Y |X] dP ∀ A ∈ B(R)∫
B

Y dP =

∫
B

E[Y |X] dP ∀ B ∈ σ(X)

– E[Y |X] ∈ σ(X) and
∫
B
Y dP =

∫
B
E[Y |X] dP ∀ B ∈ σ(X). Such r.v. is unique in the

sense that if any r.v. Z satisfies Z ∈ σ(X) and
∫
B
Y dP =

∫
B
Z dP ∀ B ∈ σ(X) then

Z = E[Y |X] a.s. provided E|Y | <∞
– From the theory on L2 space, we get geometric understanding about conditional expec-

tation. But now, from the equation above, we can guess that definition for conditional
expectation may be extended to all integrable random variables.

• Proof for the uniqueness mentioned above

– (Ω,F , P ) : a prob. space. Y ∈ F and E|Y | < ∞. G ⊂ F is a sub σ-field. If X is a
random variable satisfying (a) X ∈ G (b)

∫
A
Y dP =

∫
A
X dP ∀A ∈ G then

i. X is integrable

ii. Such X is unique in the sense that if there is another X ′ then X = X ′ a.s.

F Trick : For any r.v. Z, (Z > 0) =
⋃
ε>0(Z ≥ ε) =

⋃
n∈N(Z > 1

n
)

F Lemma : For any F -measurable and integrable X and Y ,
if
∫
A
X dP =

∫
A
Y dP ∀A ∈ F then X = Y a.s.

• Radon-Nikodym Thm

– If µ, ν are σ−finite measures on (Ω,F) and ν � µ ( µ(A) = 0 ⇒ ν(A) = 0 ∀A ∈ F
) then ∃ a F -measurable nonnegative function g s.t. ν(A) =

∫
A
g dµ ∀A ∈ F . The

function g is unique in the sense that if h is another such function then g = h µ− a.e.

* Definition of conditional expectation

– (Ω,F0, P ) : a prob. space. F ⊂ F0 : a sub σ-field.
X is a random variable s.t. X ≥ 0, X ∈ F0 and E|X| <∞. Then ∃ a unique r.v. Y s.t.
Y ≥ 0, Y ∈ F and

∫
A
X dP =

∫
A
Y dP ∀A ∈ F . Such Y is unique in the sense that if

another Y ′ exists then Y = Y ′ a.s.

– Y = E[X|F ] is said to be conditional expectation of X given F
F Applying Radon Nikodym thm to measures P |F and Q on (Ω,F) where Q is defined

by Q(A) =
∫
A
X dP ∀A ∈ F . Note that Q� P |F and Q is a finite measure.

– We can extend the definition to general integrable r.v. X
Y = E[X|F ] is a unique random varaible s.t. Y ∈ F and

∫
A
X dP =

∫
A
Y dP ∀A ∈ F .

E[X|F ] is also integrable and the uniqueness is in the sense of a.s. equivalence relation.
Y = E[X|F ] can be derived by Y = Y1 − Y2 where Y1 = E[X+|F ] and Y2 = E[X−|F ]
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* Conditional expectation given a random variable

– X : integrable r.v. For a random variable Y , define E[X|Y ] := E[X|σ(Y )]
√

Y need not be integrable.
√

Since E[X|Y ] ∈ σ(Y ), E[X|Y ] = g(Y ) for some Borel function g. This coincides with the
definition of conditional expectation in L2 space.

* Conditional probability

– For A ∈ F0 and a sub σ-field F ⊂ F0, define P (A|F) := E[IA|F ]

– For A,B ∈ F0, define P (A|B) = P (A ∩ B) /P (B)

• Elementary properties of conditional expectation

– (Ω,F0, P ) : a prob. space. F ⊂ F0 : a sub σ-field. X, Y : integrable random variables

i. E[c|F ] = c

ii. E[ψ(X)|X] = ψ(X) given E|ψ(X)| <∞
iii. If F is a trivial σ-field i.e. F = {Ω, φ} then E[X|F ] = E[X]

iv. Ω =
⋃∞
i=1 Ωi is a partition of Ω with Ωi ∈ F0 and P (Ωi) > 0 ∀ i ∈ N

F = σ{Ω1,Ω2, · · · } = {
⋃
j∈κ Ωj : κ ⊂ N} (F is a σ-field). Then we have

E[X|F ] =
∞∑
i=1

aiIΩi
with ai =

E[XIΩi
]

P (Ωi)

√
For A ∈ F0, P (A|F) = P (A|Ωi)IΩi

F Lemma : If Z ∈ F for such F , then we can write Y =
∑∞

i=1 ciIΩi
where ci ∈ R

v. E[aX + bY |F ] = aE[X|F ] + bE[Y |F ] ∀a, b ∈ R
vi. X ≥ 0⇒ E[X|F ] ≥ 0 a.s.

F Lemma : If Z > 0 on A with P (A) > 0 then
∫
A
Z dP > 0

vii. X ≤ Y ⇒ E[X|F ] ≤ E[Y |F ] a.s.

viii.
∣∣E[X|F ]

∣∣ ≤ E
[
|X|

∣∣F]
� |X| ≤M for some M > 0 ⇒

∣∣E[X|F ]
∣∣ ≤M a.s.

ix. E[|X| |F ] = 0 ⇒ X = 0 a.s.

x. E[E[X|F ]] = E[X]

• X, Y : integrable r.v’s where X ⊥⊥ Y . ψ : R2 → R Borel measurable s.t. E|ψ(X, Y )| <∞
Define g : R→ R by g(x) = E[ψ(x, Y )] ∀x ∈ R. Then E[ψ(X, Y )|X] = g(X)

√
g(x) = E[ψ(x, Y )] =

∫
ψ(x, Y ) dP =

∫
R ψ(x, y)dPY −1(y) =

∫
R ψx(y) dµY (y) ∀x ∈ R

By Fubini thm in real analysis course, it is shown that g is Borel measurable & integrable.

• Conditional expectation and convergence

– (Ω,F0, P ) : a probability space. F ⊂ F0 : a sub σ−field

i. (MCT) If Xn ≥ 0 and Xn ↗ X a.s. with E(X) <∞ then E[Xn|F ]↗ E[X|F ] a.s.

� If Yn ↘ Y a.s. with E|Y1|, E|Y | <∞ then E[Yn|F ]↘ E[Y |F ] a.s.

ii. (DCT) If |Xn| ≤ Y, E(Y ) <∞ and Xn → X a.s. then E[Xn|F ]→ E[X|F ] a.s.
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iii. (Fatou’s lemma) If Xn ≥ 0 and Xn → X a.s. with E(Xn) < ∞, E(X) < ∞ then
E[X|F ] ≤ lim inf E[Xn|F ]

iv. (Continuity from below) {Bn} ⊂
seq
F0 s.t. Bn ⊂ Bn+1 ∀n ∈ N. B :=

⋃
nBn

Then P (Bn|F)↗ P (B|F)

v. (Countable additivity) If {Cn} ⊂
seq
F0 is mutually disjoint then P (

⋃
nCn|F) =

∑
n P (Cn|F)

• Essential inequalities

i. (Markov) P (|X| ≥ c |F) ≤ 1
c
E
[
|X|
∣∣F] ∀ c > 0

ii. (Jensen) If φ : R→ R is convex then φ(E[X|F ]) ≤ E[φ(X)|F ] a.s.

F Trick : For each x ∈ R and convex function φ : R→ R, we have
φ(x) = sup{ax+ b : (a, b) ∈ S} where S = {(a, b) ∈ R2 : ax+ b ≤ φ(x) ∀x ∈ R}

iii. (Cauchy-Schwarz) For X, Y ∈ L2, we have E2[XY |F ] ≤ E[X2|F ]E[Y 2|F ] a.s.

• Smoothing property of conditional expectation

i. If X ∈ F , E|Y | <∞, and E|XY | <∞ then E[XY |F ] = XE[Y |F ] a.s.
√

E|X| <∞ assumption is not required.

� If X ∈ F and E|X| <∞ then E[X|F ] = X a.s.

ii. If F1 ⊂ F2 ⊂ F0 are sub σ-fields and E|X| <∞ then

(a) E[E(X|F1)|F2] = E[X|F1]

(b) E[E(X|F2)|F1] = E[X|F1]

F Lemma : If F1 ⊂ F2 then Y ∈ F1 ⇒ Y ∈ F2√
In short, “the smaller wins”. In view of information, it is similar to projection onto
vector subspaces S1 ⊂ S2 ⊂ S where ProjS1ProjS2 = ProjS2ProjS1 = ProjS1

• Def. of conditional expectation by Radon-Nikodym derivative agrees with def. in L2 space.

– If E(X2) <∞ then for C = {Y : Y ∈ F , E(Y 2) <∞},
E[{X − E[X|F ]}2] = infY ∈C E[{X − Y }2] and E[X|F ] = arg minY ∈C E[{X − Y }2]

F Lemma : If X ∈ L2 then E[X|F ] ∈ L2

* Independence of a random variable and a σ-field

– A random variable X and a σ-field F are said to be independent if σ(X) and F are
independent

• If an integrable random variable X and a σ-field F are independent then E[X|F ] = E[X]

� Two extreme cases of conditional expectations w.r.t information

– Perfect information : If X ∈ F then E[X|F ] = X

– No information : If X ⊥⊥ F then E[X|F ] = E[X]

* Conditional variance

V ar(X|F) := E[{X − E[X|F ]}2|F ] = E[X2|F ]− E2[X|F ]

Conditional variance is defined for X ∈ L2
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2 Martingales

* Definition needed for martingales

– Given a probability space (Ω,F , P ), increasing sequence of sub σ-fields {Fn}∞n=0 is called
a filtration.

– A random sequence {Xn}∞n=0 is said to be adapted to {Fn} if Xn ∈ Fn ∀n ∈ N ∪ {0}

* Definition of martingale and their cousins

– {Xn}∞n=0 : a random sequence. {Fn}∞n=0 : a filtration. Assume E|Xn| <∞ ∀n ∈ N∪{0}
and {Xn} is adapted to {Fn}. Then {Xn} is said to be a martingale (w.r.t {Fn}) if
E[Xn+1|Fn] = Xn ∀n ∈ N ∪ {0}

– {Xn} is said to be a submartingale (w.r.t {Fn}) if E[Xn+1|Fn] ≥ Xn ∀n ∈ N ∪ {0}
– {Xn} is said to be a supermartingale (w.r.t {Fn}) if E[Xn+1|Fn] ≤ Xn ∀n ∈ N ∪ {0}
√

These are abbreviated to ‘mtg’, ‘submtg’, ‘supermtg’ respectively.

• Examples of martingales

i. {ξn}n i.i.d with E(ξ1) = 0. X0 = 0 . Xn = ξ1 + · · ·+ ξn and F0 = {φ,Ω} .
Fn = σ(ξ1, · · · , ξn). Then {Xn} is a martingale w.r.t {Fn}
F Trick : E[Z] is finite ⇔ Z is integrable. (∵ the definition of expectation)

ii. Adding assumption V ar(ξ1) = σ2 <∞ to i. above.
Then {Xn − nσ2} is a martingale w.r.t {Fn}

iii. {εn}n i.i.d ∼ (0, 1). X0 = 0 . Xn+1 = Xn + h(Xn)εn+1 with h : R→ R Borel function s.t.
E|h(Xn)| <∞ ∀n ∈ N ∪ {0} and F0 = {φ,Ω} . Fn = σ(ε1, · · · , εn)
Then {Xn} is a martingale w.r.t {Fn}

iv. {εn}n i.i.d ∼ (0, 1). Y0 = 0 . Yn+1 = φ(Yn)εn+1 with φ(y) = w + αy2 (w > 0, 0 ≤ α < 1)
and E[φ(Yn)] <∞ ∀n ∈ N. and F0 = {φ,Ω} . Fn = σ(ε1, · · · , εn).
Let X0 = 0 . Xn = Y1 + · · ·Yn. Then {Xn} is a martingale w.r.t {Fn}
√

Such {Yn} is called as ARCH (autoregressive conditional heteroskedasticity) process

• Elementary facts about Martingales

– Every martingale is a submartingale and a supermartingale

– If {Xn} is a submartingale then {−Xn} is a supermartingale
√

We develop theory about martingales often assuming submartingale since every mar-
tingale is submartingale and every supermartingale is negative version of submartin-
gale

– If {Xn} is a martingale w.r.t {Fn} then E[Xn|Fm] = Xm whenever n ≥ m

– If {Xn} is a submartingale w.r.t {Fn} then E[Xn|Fm] ≥ Xm whenever n ≥ m

– If {Xn} is a supermartingale w.r.t {Fn} then E[Xn|Fm] ≤ Xm whenever n ≥ m

– If {Xn} is a martingale w.r.t {Fn} then {E[Xn]} is constant.

– If {Xn} is a submartingale w.r.t {Fn} then {E[Xn]} is increasing.

– If {Xn} is a supermartingale w.r.t {Fn} then {E[Xn]} is decreasing.
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• Convex transformation of martingale

– If {Xn} is a martingale w.r.t {Fn} and φ : R→ R is a convex function s.t.
E|φ(Xn)| <∞ ∀n ∈ N then {φ(Xn)} is a submartingale w.r.t {Fn}

– If {Xn} is a submartingale w.r.t {Fn} and φ : R→ R is a convex and increasing function
s.t. E|φ(Xn)| <∞ ∀n ∈ N then {φ(Xn)} is a submartingale w.r.t {Fn}

– If {Xn} is a supermartingale w.r.t {Fn} and φ : R → R is a concave and increasing
function s.t. E|φ(Xn)| <∞ ∀n ∈ N then {φ(Xn)} is a supermartingale w.r.t {Fn}

(Ex) If {Xn} is a martingale and E[|Xn|p] <∞ for some p ≥ 1 , then {|Xn|p} is a submartingale

(Ex) If {Xn} is a submartingale then for any a ∈ R, {(Xn − a)+} is a submartingale

(Ex) If {Xn} is a supermartingale then for any a ∈ R, {Xn ∧ a} is a supermartingale

(Ex) If {Xn} is a submartingale then {X+
n } is a submartingale and {X−n } is a supermartingale

* Predicatable sequence and a process using it

– For a filtration {Fn}∞n=0, a random sequence {Hn}∞n=1 is said to be a predicatable sequence
(w.r.t {Fn}) if Hn ∈ Fn−1 ∀n ∈ N
√

A letter H stands for a ‘height’

– Suppose {Xn} is adapted to {Fn}. For a predicatable sequence {Hn} (w.r.t {Fn}), we
define a process {(H ·X)n} by

(H ·X)n =
n∑

m=1

Hm(Xm −Xm−1)

√
Note that {(H ·X)n} is adapted to {Fn}√
The definition above can be extended from {(H ·X)n}n∈N to {(H ·X)n}n∈N∪{0} with
additionally defining (H · X)0 = 0 . Obviously (H · X)0 ∈ F0 . For the following
theorems using this process, we can regard it as {(H ·X)n}n∈N∪{0}

• Elementary facts about martingale transform with predicatable sequence

– Let {Xn}∞n=0 and {Hn}∞n=1 be a random sequence and {Hn} is a predicatable sequence
w.r.t. a filtration {Fn}∞n=0. Assume E|XnHn| <∞ , E|Xn−1Hn| <∞ ∀n ∈ N

i. If {Xn} is a martingale (w.r.t {Fn}) then {(H ·X)n} is also a martingale

ii. If {Xn} is a submartingale (w.r.t {Fn}) and Hn ≥ 0 then {(H · X)n} is also a
submartingale

iii. If {Xn} is a supermartingale (w.r.t {Fn}) and Hn ≥ 0 then {(H · X)n} is also a
supermartingale

√
The condition “E|XnHn| < ∞ , E|Xn−1Hn| < ∞ ∀n ∈ N” can be replaced with “For
each n ∈ N, Hn is bounded”.

* Stopping time

– A (extended) random variable N taking values of N∪{0,∞} is said to be a stopping time
(w.r.t a filtration {Fn}) if an event (N = n) ∈ Fn ∀n ∈ N

(N ≤ n) =
n⋃
j=0

(N = j) ∈ Fn (N > n) = (N ≤ n)C ∈ Fn

(N < n) =
n−1⋃
j=0

(N = j) ∈ Fn−1 (N ≥ n) = (N < n)C ∈ Fn−1
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– (N ≥ n) is a Fn−1-measurable event. I(N ≥ n) is Fn−1-measurable random variable.
Hence, {I(N ≥ n)}n is a predictable sequence given N is a stopping time.

• Martingale stopped by stopping time

– Let {Xn} be a random sequence adapted to {Fn}. Let N be a stopping time w.r.t {Fn}
and put Hn = I(N ≥ n) ∀n ∈ N . Then (H ·X)n = XN∧n −X0.

– The process {XN∧n}n is said to be a martingale stopped by stopping time N , provided
{Xn} is a martingale.

F If {Xn} and {Yn} are martingales (w.r.t. {Fn}) then {Xn + Yn} is also a martingale.
The same holds for submartingales and supermartingales too.

– If {Xn} is a martingale and N is a stopping time then {XN∧n} is martingale.

– If {Xn} is a submartingale and N is a stopping time then {XN∧n} is submartingale.

– If {Xn} is a supermartingale and N is a stopping time then {XN∧n} is supermartingale.

• Stopping time and Upcrossing

– Suppose {Xn}∞n=0 is a submartingale w.r.t {Fn}. Let a < b. Define Nj’s as below :

N1 = inf{m ≥ 0 : Xm ≤ a} N2 = inf{m > N1 : Xm ≥ b}
N3 = inf{m > N2 : Xm ≤ a} N4 = inf{m > N3 : Xm ≥ b}

...
...

N2k−1 = inf{m > N2k−2 : Xm ≤ a} N2k = inf{m > N2k−1 : Xm ≥ b}
...

...

– Every Nj for j ∈ N is stopping time w.r.t {Fn}. N1 < N2 < N3 · · · provided all Nj’s are
finite. (It is possible that Nj =∞ provided it has a form of inf(φ))

– ‘Upcrossing’ is a case where the submartingale {Xn} crosses from below a to above b.

– Un := sup{k : N2k ≤ n} is the number of upcommings completed by time n

• Upcrossing inequality

– Suppose {Xn} is a submartingale w.r.t {Fn}. If stopping time Nj and the number of
upcrossings Un are defined as above then

(b− a)E[Un] ≤ E[(Xn − a)+]− E[(X0 − a)+]
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• Submartingale convergence theorem

– If {Xn} is a submartingale w.r.t {Fn} with supnE(X+
n ) <∞ then Xn → X a.s. for some

integrable random variable X

F Trick : If Xn → X a.s. then X+
n → X+ a.s. and X−n → X− a.s.

F Lemma : If the number of upcrossings of [a, b] by submartingale {Xn} is finite for any
a, b ∈ Q, then limnXn exists. i.e. Xn converges to some r.v. almost surely.

� If {Xn} is a nonnegative supermartingale w.r.t {Fn} thenXn → X a.s. for some integrable
random variable X s.t. E(X) ≤ E(X0)

• Example of martingale which converges almost surely but not in L1

– {ξn}n i.i.d with P (ξ1 = 1) = P (ξ1 = −1) = 1/2. Let S0 = 1, Sn = Sn−1 + ξn and
F0 = {φ,Ω}, Fn = σ(ξ1, · · · , ξn). Then {Sn} is a martingale w.r.t {Fn}
Let N = inf{n ∈ N : Sn = 0}. Then N is a stopping time.
Xn := SN∧n so that Xn = Sn if n < N and Xn = 0 if n ≥ N . {Xn} is a nonnegative
integer valued martingale w.r.t {Fn}. Xn → 0 a.s. but Xn 9 0 in L1.

• If {Xn}n∈N∪{0} is a negative submartingale w.r.t {Fn}n∈N∪{0} then so is {Xn}n∈N∪{0,∞} w.r.t
{Fn}n∈N∪{0,∞} where X∞ = limnXn and F∞ = σ

(⋃∞
n=0Fn

)
– If {Xn}n∈N is a martingale w.r.t {Fn}n∈N and Xn → X∞ a.s. then X∞ ∈ F∞ = σ(

⋃
nFn )

• Doob’s decomposition

– Any submartingale {Xn} can be written as Xn = Mn + An where {Mn} is a martingale
and {An} is a predictable increasing sequence with A0 = 0. Also, this expression is unique
in the sense that if Xn = M ′

n+A′n is another expression then Mn = M ′
n and An = A′n a.s.

√
The exact form of Mn, An for given Xn is An = An−1 + E[Xn|Fn−1] − Xn−1 ∀n ∈ N
and Mn = Xn − An ∀n ∈ N ∪ {0} ( Since A0 = 0, An =

∑n
k=1(E[Xk|Fk−1]−Xk−1) )

* Almost sure convergence on a restricted event

– Define “Xn → X a.s. on B” for measurable set B as
P ((Xn → X) ∩ B) = P (B) or equivalently, P ((Xn 9 X) ∩ B) = 0

F Lemma : Xn → X a.s. on B ⇒ Xn → X a.s. on A whenever A ⊂ B

F Lemma : Xn → X a.s. on Ak ∀ k ∈ N ⇒ Xn → X a.s. on
⋃
k∈NAk

• Martingales with bounded increments either converge or oscillate between ∞ and −∞

– Let {Xn} be a martingale with |Xn −Xn−1| ≤M <∞ ∀n ∈ N for some M > 0.
Define disjoint subsets C, D ⊂ Ω by

C = ( lim
n
Xn exists and −∞ < lim

n
Xn <∞ )

D = ( lim supXn =∞ and lim inf Xn = −∞ )

Then P (C ∪ D) = 1

• Conditional Borel-Cantelli second lemma
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– Let {Fn}n∈N ∪{0} be a filtration with F0 = {φ,Ω} . If An ∈ Fn ∀n ∈ N then

(An i.o.) =
( ∞∑
n=1

P (An|Fn−1) =∞
)
a.s.

F Define “A = B a.s.” for measurable sets A and B by P (A∆B) = 0 where A∆B
denotes the symmetric difference of two sets.

F
∑n

k=1 IAk
is a submartingale whose martingale compoenent of Doob’s decomposition

is
n∑
k=1

IAk
−

n∑
k=1

(
E
[ k∑
j=1

IAj
|Fk−1

]
−

k−1∑
j=1

IAj

)
=

n∑
k=1

IAk
−

n∑
k=1

P (Ak|Fk−1)

and this is the martingale we exploit in the proof of conditional B-C 2nd lemma

F Trick : (An i.o.) =
(∑∞

n=1 IAn =∞
)

√
Given {An} is independent, by setting Fn = σ(A1, · · · , An), conditional Borel-Cantelli
second lemma implies original Borel-Cantelli second lemma which is given by∑

n

P (An) =∞ ⇒ P (An i.o.) = 1

* Branching process (Galton-Watson process)

– Let {ξni }i∈N, n∈N be i.i.d nonnegative integer-valued random variables.
Define a Galton-Watson process {Zn}n∈N∪{0} as below :

Z0 = 1

Zn+1 =

{
ξn+1

1 + · · ·+ ξn+1
Zn

=
∑Zn

j=1 ξ
n+1
j if Zn > 0

0 if Zn = 0

√
The idea behind the definitions is that Zn is the population in the n-th generation and
each member of the n-th generation gives birth independently to an identically distributed
number of offspring.

– P (ξ1
1 = k) ∀ k ∈ N ∪ {0} is called the offspring distribution. µ = E(ξ1

1) is the expected
number of offspring per individual.

• Properties of the branching process

– Let Fn = σ({ξmi : i ∈ N, 1 ≤ m ≤ n}) ∀n ∈ N , F0 = {φ,Ω} . If µ = E(ξ1
1) ∈ (0,∞)

then {Zn/µn} is a martingale w.r.t {Fn} and E(Zn) = µn ∀n ∈ N
– If µ = E(ξ1

1) ∈ (0, 1) then Zn = 0 for large enough n’s a.s. i.e. the species goes extinct.

• Inequality for bounded stopping time

– If {Xn} is a submartingale and N is a stopping time with P (N ≤ K) = 1 for some K ∈ N
then

E(X0) ≤ E(XN) ≤ E(XK)
√

Since {Xn} is a submartingale, E(X0) ≤ E(Xj) ≤ E(XK) whenever 0 ≤ j ≤ K . This
thm tells us that similar inequality still holds true when the index is random.
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� If {Xn} is a martingale and N is a stopping time with P (N ≤ K) = 1 for some K ∈ N
then

E(X0) = E(XN) = E(XK)

• Doob’s inequality

– Let {Xn}n∈N∪{0} be a submartingale. Take n ∈ N and define Xn = max0≤m≤nXm.
Let λ > 0 and define an event A = (Xn ≥ λ) . Then the inequality below holds true.

λP (A) ≤ E[XnIA] ≤ E[X+
n IA] ≤ E[X+

n ]

� Let {Xn}n∈N∪{0} be a supermartingale. Take n ∈ N and define Xn = max0≤m≤nXm.
Let λ > 0 and define an event A = (Xn ≥ λ) . Then the inequality below holds true.

λP (A) ≤ E[X0]− E[XnIAC ] ≤ E[X0] + E[X−n ]

√
Note that P (A) involves max0≤m≤n term while E[X+

n ] or E[X−n ] only depends on n

• Doob’s Lp maximal inequality

– If {Xn}n∈N∪{0} is a nonnegative submartingale, then for 1 < p <∞ and
Xn = max0≤m≤nXm , the inequality below holds true.

E
(
X
p

n

)
≤
( p

p− 1

)p
E[Xp

n]

� If {Xn}n∈N∪{0} is a martingale then for 1 < p <∞ and
|Xn| = max0≤m≤n |Xm| , the inequality below holds true.

E|Xn|p ≤
( p

p− 1

)p
E|Xn|p

F Lemma : If X ≥ 0 then E(X) =
∫∞

0
P (X > t) dt

• Lp convergence thm

– If {Xn} is a martingale with supnE|Xn|p < ∞ for some p > 1 then Xn → X a.s. and
Xn → X in Lp for some integrable r.v. X

√
For a martingale convergence thm, the condition was supnE(X+

n ) <∞
F Trick : a, b ∈ R and p ≥ 1 ⇒ |a+ b|p ≤ 2p(|a|p + |b|p)

* σ-field generated by a stopping time

– Let τ be a stopping time w.r.t. a filtration {Fn} . Then we define Fτ as the following :

Fτ = {A ∈ F : A ∩ (τ = n) ∈ Fn ∀n ∈ N}
√

Note that Fτ is indeed a σ-field.
√

τ is Fτ -measurable
√

If {Xn} is adapted to {Fn} then Xτ is Fτ -measurable

• Bounded optional stopping thm

– Let {Xn} be a submartingale . Let σ and τ be two bounded stopping times s.t. σ ≤ τ ≤ B
a.s. for some B ∈ N . Then E[Xτ |Fσ] ≥ Xσ a.s.
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√
Xτ =

∑B
n=0 XnI(τ = n) is well-defined and integrable.

√
By defining property of submartingale, E[Xm|Fn] ≥ Xn ∀ m ≥ n . The thm tells us
that this property is preserved even when indices are stopping times if they are bounded.

F Trick : For a random variable X and a σ-field F ,

i. (X ≤ a) ∈ F ∀ a ∈ R⇒ (X ∈ A) ∈ F ∀ A ∈ B(R)

ii. For S ∈ F , (X ≤ a) ∩ S ∈ F ∀ a ∈ R⇒ (X ∈ A) ∩ S ∈ F ∀ A ∈ B(R)

F Lemma : For any F -measurable and integrable X and Y ,

i. If
∫
A
X dP =

∫
A
Y dP ∀A ∈ F then X = Y a.s.

ii. If
∫
A
X dP ≤

∫
A
Y dP ∀A ∈ F then X ≤ Y a.s.

F Lemma : {Xn} is a submartingale w.r.t {Fn} ⇒
∫
A
Xn dP ≤

∫
A
Xn+1 dP ∀ A ∈ Fn

* Uniform integrability

– A collection of r.v.’s {Xt : t ∈ T} is said to be uniformly integrable if

lim
a→∞

sup
t∈T

∫
|Xt|≥a

|Xt| dP = lim
a→∞

sup
t∈T

E|Xt|I(|Xt| ≥ a) = 0

√
Denote it as {Xt}t∈T u.i.

√
A uniformly integrable family is well-controlled in the sense that if {Xt}t∈T u.i. then
∃M > 0 s.t. supt∈T E|Xt| ≤M + 1 <∞

√
If {Xt}t∈T is uniformly integrable then each Xt is integrable .

• If {Xt}t∈T is dominated by a nonnegative integrable r.v. X i.e. |Xt| ≤ X a.s. ∀ t ∈ T
then {Xt}t∈T is uniformly integrable.

F Lemma: If X is integrable then
∫
|X|≥a |X| dP = E|X|I(|X| ≥ a)→ 0 as a→∞

• Equivalent condition for uniform integrability

– {Xt}t∈T is uniformly integrable iff both of two conditions below are satified.

i. suptE|Xt| <∞
ii. ∀ ε > 0, ∃ δ > 0 s.t. supt

∫
A
|Xt| dP < ε whenever A ∈ F and P (A) < δ

• Elementary properties of uniform integrable family

– If {Xn}n∈N and {Yn}n∈N are both uniformly integrable then {Xn + Yn}n∈N u.i.

– If |Xn| ≤ |Yn| ∀n ∈ N and {Yn}n∈N is uniformly integrable then {Xn}n∈N u.i.

• Vitali’s lemma

– For p ≥ 1, if {Xn} ⊂
seq

Lp and Xn
P→ X then the followings are equivalent.

i. {Xn
p}n∈N is uniformly integrable.

ii. X ∈ Lp and Xn → X in Lp

iii. E|Xn|p → E|X|p <∞
F Lemma : For a r.v. Z, continuity set {z ∈ R : P (Z = z) = 0} is dense in R

• If {Xn}n∈N is uniformly integrable and Xn
D→ X then E|Xn| → E|X| and E(Xn)→ E(X)
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F Lemma : If Yn → Y in L1 then E|Yn| → E|Y | and E(Yn)→ E(Y )

* Regular martingale and closable martingale

– Let {Xn}n∈N∪{0} be a martingale.

i. {Xn} is said to be regular if ∃X ∈ L1 s.t. Xn = E[X|Fn] a.s. ∀n ∈ N
ii. {Xn} is said to be closable if ∃X∞ ∈ L1 s.t. Xn → X∞ a.s. , X∞ ∈ F∞ where
F∞ = σ(

⋃
nFn ) and E[X∞|Fn] = Xn ∀n ∈ N so that

{Xn}n∈N∪{0,∞} is a martingale w.r.t {Fn}n∈N∪{0,∞}√
Every closable martingale is regular.

• For a martingale {Xn}n∈N, the followings are equivalent.

i. {Xn} is regular.

ii. {Xn} is uniformly integrable and converges a.s.

iii. {Xn} converges in L1

iv. {Xn} is closable.

� For a martingale {Xn}n∈N w.r.t {Fn}n∈N

– If Xn → X in L1 then Xn → X a.s. and Xn = E[X|Fn] ∀n ∈ N
– If {Xn} is uniformly integrable then Xn → X a.s. for some integrable r.v. X and
Xn = E[X|Fn] ∀n ∈ N

– If Xn = E[X|Fn] for some integrable r.v. X then {Xn} is uniformly integrable and
∃ integrable r.v. X∞ ∈ F∞ s.t. E[X∞|Fn] = Xn ∀n ∈ N and Xn → X∞ a.s. and in L1.

• Levy’s thm

– If {Fn}n∈N is a filtration and F∞ = σ(
⋃
nFn ) then for an integrable r.v. X,

E[X|Fn]→ E[X|F∞] a.s. and in L1.

• Conditional DCT (generalized version)

– Let {Fn}n∈N be a filtration and F∞ = σ(
⋃
nFn ) . If Xn → X a.s. and |Xn| ≤ Z for

some integrable r.v. Z , then E[Xn|Fn]→ E[X|F∞] a.s.

* Potential

– A nonnegative supermartingale {Xn} is said to be potential if E(Xn)→ 0
√

If {Xn} is potential then {Xn} is uniformly integrable and Xn → 0 a.s.

• Riesz decomposition

– Let {Xn} be a uniformly integrable nonnegative supermartingale. Then we can express
Xn as Xn = Mn+Vn where {Mn} is uniformly integrable martingale and {Vn} is potential.
Furthermore, such decomposition is unique.

• If {Xn} is uniformly integrable submartingale, then for any stopping time N , stopped process
{XN∧n} is also uniformly integrable submartingale.

F Lemma : If Xn → X a.s. then X+
n → X+ a.s. and X−n → X− a.s.
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• Inequality for unbounded stopping time

– If {Xn} is uniformly integrable submartingale then for any stopping time N , we have
E(X0) ≤ E(XN) ≤ E(X∞) where Xn → X∞ a.s.

� If {Xn} is uniformly integrable martingale then for any stopping time N , we have
E(X0) = E(XN) = E(X∞) where Xn → X∞ a.s.

• Optional stopping thm

– If L ≤M are stopping times and {Xn} is uniformly integrable submartingale then
E[XL] ≤ E[XM ] and XL ≤ E[XM |FL] a.s.

• Suppose {Xn} is a submartingale and E
[
|Xn+1 − Xn|

∣∣Fn] ≤ B a.s. ∀n ∈ N . If N is a
stopping time with E(N) <∞ then {XN∧n} is unifomly integrable and E(X0) ≤ E(XN)

√
Note that E(N) <∞ condition implies that N is almost surely finite.

F Lemma : E|X| <∞⇔
∑

n P (|X| ≥ n) <∞

• If {Xn} is a nonnegative supermartingale and N is a stopping time then E(X0) ≥ E(XN)

• Comment for XN with stopping time N and (sub)martingale {Xn}

– XN =
∑∞

n=0 XnI(N = n)

– Note that N can take value of N =∞ . Thus, for XN to make sense, N should be almost
surely bounded or X∞ is well-defined.

– If X∞ is well-defined such that Xn → X∞ a.s. then XN∧n → XN a.s.

– How can we figure out integrability of XN ?

i. If N is bounded a.s.

- N ≤ K a.s. for some K ∈ N . Hence E|XN | ≤
∑K

n=0 E|Xn| <∞
ii. If {Xn} is uniformly integrable submartingale

- Xn → X∞ a.s. ⇒ XN∧n → XN a.s. Since {XN∧n} is also uniformly integrable
submartingale, by Vitali lemma, XN ∈ L1 i.e. XN is integrable.

iii. If {Xn} is nonengative supermartingale

- Xn → X∞ a.s. ⇒ XN∧n → XN a.s. By inequality for bounded stopping time,
E[XN∧n] ≤ E[X0] and using Fatou’s lemma, we have 0 ≤ E[XN ] ≤ E[X0] <∞

• Asymmetric simple random walk

– Let {ξi}i∈N be i.i.d. random seq. s.t. P (ξ1 = 1) = p and P (ξ1 = −1) = q = 1− p for some
0 < p < 1 . S0 = 0, Sn = ξ1 + · · ·+ ξn and Fn = σ(ξ1, · · · ξn) ∀n ∈ N

i. For ψ : R→ R defined by ψ(x) =
(

1−p
p

)x
, {ψ(Sn)} is a martingale.

ii. Define Tm = inf{n ∈ N ∪ {0} : Sn = m} for m ∈ Z where inf(φ) is interpreted as ∞
For any a, b ∈ Z s.t. a < 0 < b , we have

P (Ta < Tb) =
ψ(b)− ψ(0)

ψ(b)− ψ(a)

p > q ⇒ Tb <∞ a.s. , p < q ⇒ Ta <∞ a.s. , p = q ⇒ Ta , Tb <∞ a.s.
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iii. If p > q ( p > 1
2

) then

P (inf
n
Sn ≤ a) = P (Ta <∞) =

(1− p
p

)−a ∀ a < 0

E[Tb] =
b

2p− 1
∀b > 0

F Trick : For |r| < 1 ,
∑∞

n=1 nr
n converges to a finite number r/(1− r)2

• Square integrable Martingales

– Suppose {Xn} is a martingale with X0 = 0 and E[X2
n] <∞ ∀n ∈ N

– Since X2
n is a submartingale, we can find X2

n = Mn +An which is a Doob’s decomposition
for X2

n. Here, An is called the increasing process associated with Xn

An =
n∑
k=1

E[X2
k |Fk−1]−X2

k−1 =
n∑
k=1

E[(Xk −Xk−1)2|Fk−1] with A0 = 0

– Since An is increasing, A∞ = limnAn = supnAn exists.

– An can be though of as a path by path measurement of the variance at time n and A∞
can be viewed as the total variance in the path.

– An is integrable and E[X2
n] = E[An] ∀n ∈ N

– Two results about boundedness

E[sup
n
X2
n] ≤ 4E[A∞] and E[sup

n
|Xn|] ≤ 3E[

√
A∞]

– Two results about convergence

i. Xn converges to a finite limit a.s. on (A∞ <∞)

F Trick : If N is a stopping time , then XN∧n is a square integrable martingale and
AN∧n is the increasing process associated with XN∧n

ii. If f : R→ R be an increasing function with f(t) ≥ 1 ∀ t ∈ R and
∫∞

0
1/f 2(t) dt <∞

then Xn/f(An)→ 0 a.s. on (A∞ =∞)

F Trick : For such function f , we have f(t)↗∞ as t→∞
F Lemma : [Kronecker’s lemma] If 0 < an ↗∞ and

∑∞
n=1

1
an
xn converges

then 1
an

∑n
j=1 xj → 0

• Conditional Borel-Cantelli second lemma (2nd version)

– Suppose Bn ∈ Fn ∀n ∈ N and F0 = {φ,Ω} . Let pn = P (Bn|Fn−1) ∀n ∈ N . Then ,∑n
m=1 IBm∑n
m=1 pm

→ 1 a.s. on
(∑

n

pn =∞
)

√
This extends the original Borel-Cantelli second lemma .
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• Buckholder’s inequality

– Suppose {Si}0≤i≤n is a martingale with S0 = 0 . Let Xi = Si − Si−1 be a ‘martingale
difference’ . Then for 1 < p <∞ , ∃ c1 and c2 depending only on p such that

c1 · E
∣∣ n∑
i=1

X2
i

∣∣ p2 ≤ E|Sn|p ≤ c2 · E
∣∣ n∑
i=1

X2
i

∣∣ p2
In fact, c1 = (18p1/2q)−p and c2 = (18pq1/2)p where q is Holder conjugate of p

√
We can handle martingale with squared sum of martingale difference sequences.

� Marcinkiewicz-Zygmund inequality

– Suppose Xi’s are i.i.d. random variables with E[X1] = 0 and E|X1|P <∞ for some p > 1
. Let Sn = X1 + · · · + Xn ( Sn is a martingale w.r.t. Fn = σ(X1, · · · , Xn) ) . Then we
have

‖Sn‖p ≤ 18q1/2p
√
n‖X1‖p

with q being Holder conjugate of p

• Uniform integrability of moments of sample mean

– If {Xn} is a seq. of i.i.d. random variables with mean 0 and variance 1 and E|X1| < ∞
for some r > 1 then {∣∣∣∣ 1√

n

n∑
i=1

Xi

∣∣∣∣r}
n∈N

is uniformly integrable.
√

Combining this thm with CLT and Vitalli lemma, we can obtain that under the same
assumption,

E

∣∣∣∣ 1√
n

n∑
i=1

Xi

∣∣∣∣r → E|Z|r

where Z ∼ N(0, 1)

3 Infinitely Divisible Distribution

* Definition of infinitely divisible distributions

– A distribution F is called inifinitely divisble if one of these equivalent conditions are
satisfied.

i. For each n ∈ N, ∃ a distribution Fn s.t. F = Fn ∗ Fn ∗ · · · ∗ Fn where ∗ denotes the
convolution

ii. There is a probability space (Ω,F , P ) , a random variable X , and a double array
{Xnk : k = 1, · · ·n} such that

X ∼ F and Xnk
i.i.d.∼ Fn with X

D
= Xn1 + · · ·+Xnn ∀n ∈ N

iii. For each n ∈ N , ∃ a distribution Fn s.t.

ψF = (ψFn)n

where ψG denotes the characteristic function of the distribution G
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– We will say a characteristic function ψ is infinitely divisible if it is a characteristic function
of inifinite divisble distribution F

• For any characteristic function ψ , we have

1− |ψ(2t)|2 ≤ 4(1− |ψ(t)|2) ∀ t

• If ψ is inifinitely divisble characteristic function then ψ(t) 6= 0 for any t ∈ R

• Canonical representation of infinitely divisble characteristic function

– Let µ be a finite measure in (R,B(R)) . Define ψ as

ψ(t) = exp

(∫ ∞
−∞

eitx − 1− itx
x2

dµ(x)

)
Then ψ is a characteristic function of an infinite divisible distribution with mean 0 and
variance µ(R) .

– This is called canonical representation of ψ and µ is called a canonical measure.

• condition R of a row-wise independent double array

– A row-wise independent double array {Xnk : 1 ≤ k ≤ rn}n is said to satisfy condition R if

i. E(Xnk) = 0, E[X2
nk] = σ2

nk <∞, s2
n =

∑rn
k=1 σ

2
nk > 0

ii. supn s
2
n <∞

iii. max1≤k≤rn σ
2
nk → 0

• If X and Y are independent and E[(X + Y )2] <∞ then E[X2] + E[Y 2] <∞

• Every inifinite divisble distribution F with mean 0 and finite variance σ2 is the limit distribution
of Sn = Xn1 + · · ·+Xnrn for some row-wise independent double array {Xnk} satisfying
condition R . In fact, if double array {Xnk : k = 1, · · · , n}n is associated with infinite divisble
distribution F then it satisfies stronger condition than condition R

• Infinite divisible distribution has a canonical representation .

– If F is the limit distribution of Sn = Xn1 + · · ·Xnn for some row-wise independent double
array {Xnk : k = 1, · · · , n} satisfying condition R then F has the characteristic function
ψ with canonical representation

– By the theorem above, if F is an infinite divisble distribution with mean 0 and finite
variance σ2 then it has canonical representation.
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