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1 Conditional Expectation

e Projection Thm for Hilbert Space

— If F is a Hilbert space and M C F is closed and convex, then for any y € F,
3 a unique w € M s.t. ||y —w| =d(y, M) = inf{|ly —v|| : v € M}.
Denote it as w = projyy i.e. w is a projection of y onto M .

— If F is a Hilbert space and M C F is a closed vector subspace, then for any y € F,

i. 3 a unique decomposition y = w 4+ v with w = projyy € M and v € M+
ii. Forwe M, w=projyy< (y—w,z)=0 Vze M

* £?:= { Random Variable X : E(X?) = [ X?dP < oo}
Vv If X € £? then E|X| < oo i.e. every element of £? is integrable.
* Trick : [X| < X%+ 4
v/ L? is a vector space
% Trick : inequality (aX + bY)? < 2(a?X? + b?Y?)
e [?is a Hilbert space with inner product (X,Y) = F(XY)
% Trick : Cauchy seq. having a subseq. converging to a point converges to the point.
e Lemma for proving £2 is a complete normed space.
— If{X,} C L?and ||X,, — X,,11]| €2 VneNthen 3X € L2st. X,, > X a.s. and
1 X, — Xs|e|q—> 0 ie X, — X in L2
% Lemma : If a random varaible Z satisfies Z > 0 and E(Z) < oo then Z < 0o a.s.
* For X € £2, L*(X):={g(X)|g:R — R is a Borel function, E[(g(X))?*] < oo}
Vv For X € £% L2*(X) is a vector subspace of £2.
e For X € £% [L%*(X) is a closed vector subspace of £2 so that £2(X) is also a Hilbert space.
* Geometric definition for conditional expectation

— For X,Y € £?, define E[Y|X] = Projezx)Y
— E[Y|X] = g(X) a.s. for some Borel function g

— Y = E[Y|X]|| = minpx)eczx) |V = (X))
ie. Bl(Y — E[Y|X])?] < E[(Y — h(X))?] ¥ h(X) € £

— For g(X) € £2(X), g¢(X)=E[Y|X] & (¥ —g(X),h(X)) =0 Vh(X)e L2
S E[Y — g(X)h(X)] =0 ¥ h(X)e L2

e Elementary properties of conditional expectation from geometric definition

— If X,Y,Z € £? then the followings are true.
i. Fl|X]=cas. VceR
ii. ElaY 4+ 8Z|X]|=aE[Y|X]|+ BE[Z|X] Vo, €R
iii. E[Y|X]= FE[Y]if X and Y are independent.
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iv. Elg(X)Y|X] = g(X)E[Y|X] if g satisfies g(X) € £*(X) and sup, |g(z)| < oo

v. E[E[Y|X]] = E]Y]

v/ In fact, the additional assumption about boundedness of g in (iv) is not necessary.
We will see later.

e Extending the definition from £? to all integrable functions
E{Y —EY|X]}H(X € A)]=0 VA€BR) --I(XcAeLl)(X)

/ Y dp = / E[Y|X]dP ¥ A€ B(R)
(XeA) (XeA)
/YdP: / E[Y|X]dP V B € o(X)
B B

— ElY|X] € 0(X) and [,Y dP = [, E[Y|X]dP V B € ¢(X). Such r.v. is unique in the
sense that if any r.v. Z satisfies Z € 0(X) and [,Y dP = [, ZdP V B € ¢(X) then
Z = E[Y|X] a.s. provided E|Y| < 0o

— From the theory on £2? space, we get geometric understanding about conditional expec-
tation. But now, from the equation above, we can guess that definition for conditional
expectation may be extended to all integrable random variables.

e Proof for the uniqueness mentioned above

— (Q,F,P) : aprob. space. Y € F and E|Y| < co. G C F is a sub o-field. If X is a
random variable satisfying (a) X € G (b) [,YdP = [, XdP VA€ G then

i. X is integrable
ii. Such X is unique in the sense that if there is another X’ then X = X’ a.s.
* Trick : Forany rv. Z, (Z>0)=U..o(Z>¢)=U,n(Z > 2)

% Lemma : For any F-measurable and integrable X and Y,
if [, XdP=[,YdP VAecFthen X =Y as.

e Radon-Nikodym Thm

— If p,v are o—finite measures on (2, F) and v < pu ( p(A) = 0=v(A) =0 VAec F
) then 3 a F-measurable nonnegative function g s.t. v(A) = [,gdu VA € F. The
function g is unique in the sense that if A is another such function then g = h u — a.e.

* Definition of conditional expectation

— (Q, Fo, P) : aprob. space. F C Fy : a sub o-field.
X is a random variable s.t. X >0, X € F; and E|X| < co. Then 3 a unique r.v. Y s.t.
Y>0,YeFand [ XdP= [,YdP VA€ F . SuchY is unique in the sense that if
another Y’ exists then Y =Y a.s.

— Y = E[X|F] is said to be conditional expectation of X given F

% Applying Radon Nikodym thm to measures P|z and @ on (2, F) where @ is defined
by Q(A) = [, XdP VY AeF. Note that Q < P|r and Q is a finite measure.

— We can extend the definition to general integrable r.v. X
Y = E[X|F] is a unique random varaible s.t. Y € F and [, XdP = [,YdP VAe F.
E[X|F] is also integrable and the uniqueness is in the sense of a.s. equivalence relation.
Y = E[X|F] can be derived by Y =Y; — Y, where Y} = E[XT|F] and Yy = E[X | F]
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* Conditional expectation given a random variable

— X : integrable r.v. For a random variable Y, define E[X|Y] := E[X|o(Y)]
V/ Y need not be integrable.

V/ Since E[X|Y] € o(Y), E[X|Y] = g(Y) for some Borel function g. This coincides with the
definition of conditional expectation in £? space.

* Conditional probability

— For A € Fy and a sub o-field F C Fy, define P(A|F) := E[14|F]
— For A, B € Fy, define P(A|B) = P(A N B) /P(B)

e Elementary properties of conditional expectation

— (9, Fo, P) : aprob. space. F C Fy: asubo-field. XY : integrable random variables
i. Ele|lF]=c
i, E[U(X)X] = ¢(X) given EJp(X)] < oo
iii. If F is a trivial o-field i.e. F = {Q, ¢} then E[X|F] = E[X]
iv. @ =2, Q; is a partition of Q with ; € Fy and P(€;) >0 VieN
F=0{Q,Q, -} ={U;c, 2 : s CN} (Fisao-field). Then we have

- ‘ _ E[XIg)]
E[X|F] = Zailﬁi with a; = Py

i=1
v/ For A e Fy, P(A|F)= P(A|Q)Iq,
% Lemma : If Z € F for such F, then we can write Y = Zf; cilqg, where ¢; € R
v. ElaX +bY|F] = aFE[X|F]+bE]Y|F] Va,beR
vii X >0= E[X|F] >0 a.s.
* Lemma : If Z >0 on A with P(A) > 0 then [, ZdP >0
vii. X <Y = E[X|F]| < E[Y|F] a.s.
viii. |E[X|F]| < E[|X||F]
O |X| < M for some M >0 = |E[X|F]| <M as.
ix. B[ X||F]=0 = X=0 a.s.
x. FIE[X|F]] = E[X]

e X,Y : integrable r.v’s where X 1L Y. ¢ : R? — R Borel measurable s.t. F|i)(X,Y)| < oo
Define g : R - R by g(z) = E[¢)(z,Y)] Vaze€R. Then EY(X,Y)|X] = g(X)

V 9(@) = Ep(x,Y)] = [¢(x,Y)dP = [ (z,y)dPY " (y) = [y ¥z(y)dpy(y) Yz eR

By Fubini thm in real analysis course, it is shown that g is Borel measurable & integrable.
e Conditional expectation and convergence

— (9, Fo, P) : a probability space. F C Fy : a sub o—field
i. (MCT) If X,, >0 and X,, X a.s. with F(X) < oo then F[X,|F] / E[X|F] a.s.
O IfY, \ Y a.s. with E|Y}|, E|Y| < co then E[Y,|F] \( E[Y|F] a.s.
ii. (DCT) If |X,| <Y, E(Y) <o and X,, = X a.s. then E[X,|F] — E[X|F] a.s.



iii. (Fatou’s lemma) If X,, > 0 and X,, — X a.s. with E(X,,) < oo, E(X) < oo then
E[X|F] < liminf E[X,,|F]
iv. (Continuity from below) {B,} C Fys.t. B, C B,y1 VneN. B:=J, B,
seq
Then P(B,|F) * P(B|F)
v. (Countable additivity) If {C,,} C Fyis mutually disjoint then P({J, C,,|F) = >, P(C,|F)
seq

e Essential inequalities
i. (Markov) P(|X|>c|F)<LiE[|X]||F] Ve>0
ii. (Jensen) If ¢: R — R is convex then ¢p(E[X|F]) < E[¢(X)|F] a.s.

% Trick : For each z € R and convex function ¢ : R — R, we have
¢(x) = sup{az +b: (a,b) € S} where S = {(a,b) e R? : ax + b < ¢(z) Vz € R}

iii. (Cauchy-Schwarz) For X,Y € L2 we have E*[XY|F] < E[X?|F|E[Y?F] a.s.
e Smoothing property of conditional expectation
i. If X € F, E|Y| < 00, and E|XY| < oo then EF[XY|F| = XE[Y|F] a.s.
v E|X| < oo assumption is not required.
O If X € F and E|X| < oo then E[X|F] =X a.s.
ii. If 71 € Fo C Fy are sub o-fields and E|X| < oo then
(a) E[E(X|F)|F2] = EIX]|FA]
(b) E[E(X|F2)|F1] = EIX|F]
% Lemma: If /y C FothenY € Fi =Y € K

v/ In short, “the smaller wins”. In view of information, it is similar to projection onto
vector subspaces S; C Sy C S where Projg, Projs, = Projs,Projs, = Projs,

e Def. of conditional expectation by Radon-Nikodym derivative agrees with def. in £? space.

— If B(X?) < oo then for C={Y :Y € F, E(Y?) < o0},
E[{X — E[X|F|}*] = infyec E[{X — Y}?] and E[X|F] = argminyc E[{X — Y}?]

% Lemma : If X € £? then E[X|F] € £?
* Independence of a random variable and a o-field

— A random variable X and a o-field F are said to be independent if o(X) and F are
independent

e If an integrable random variable X and a o-field F are independent then E[X|F] = E[X]
(1] Two extreme cases of conditional expectations w.r.t information

— Perfect information : If X € F then E[X|F| =X
— No information : If X 1L F then F[X|F] = E[X]

* Conditional variance
Var(X|F) := E[{X — E[X|F|}*|F] = E[X?|F] — E*[X|F]

Conditional variance is defined for X € £?



2 DMartingales

* Definition needed for martingales
— Given a probability space (2, F, P), increasing sequence of sub o-fields {F,}>2, is called
a filtration.

— A random sequence {X,,}°, is said to be adapted to {F,} if X,, € F,, Vn € NU{0}
* Definition of martingale and their cousins

— {X,}22, : arandom sequence. {F,}>° : afiltration. Assume F|X,| < oo Vn € NU{0}
and {X,} is adapted to {F,}. Then {X,} is said to be a martingale (w.r.t {F,}) if
E[Xon|Fo] = X, VneNU{0}

— {X.,} is said to be a submartingale (w.r.t {F,}) if E[X,+1|F.] > X, Vn e NU{0}
— {X,} is said to be a supermartingale (w.r.t {F,}) if E[X,1|F.] < X, ¥Vn e NU{0}
v/ These are abbreviated to ‘mtg’, ‘submtg’, ‘supermtg’ respectively.
e Examples of martingales
Fn=0(&1, -+ ,&). Then {X,} is a martingale w.r.t {F,}
% Trick : E[Z] is finite < Z is integrable. (. the definition of expectation)

ii. Adding assumption Var(£;) = 0? < oo to i. above.
Then {X,, — no?} is a martingale w.r.t {F,}

iii. {en}niid ~(0,1). Xo=0.X,41 =X, +h(X,)ens1 with b : R — R Borel function s.t.
E|h(X,)] <oco VneNU{0} and Fo={¢,Q}.F,=0(e1, - ,en)
Then {X,} is a martingale w.r.t {F,}

iv. {en}niid ~(0,1). Yo=0.Y,1 = d(Vn)en1 with ¢(y) =w+ay? (w>0,0< a < 1)
and E[¢(Y,)] <oo VneN. and Fy = {p,Q} . F, =0(er, - ,en).
Let Xo=0.X,=Y;+---Y,. Then {X,} is a martingale w.r.t {F,}

v/ Such {Y,,} is called as ARCH (autoregressive conditional heteroskedasticity) process
e Elementary facts about Martingales

— Every martingale is a submartingale and a supermartingale
— If {X,} is a submartingale then {—X,,} is a supermartingale

v/ We develop theory about martingales often assuming submartingale since every mar-
tingale is submartingale and every supermartingale is negative version of submartin-
gale

— If {X,.} is a martingale w.r.t {F,} then E[X,|F,] = X,, whenever n > m

— If {X,,} is a submartingale w.r.t {F,} then E[X,|F,] > X,, whenever n > m
— If {X,.} is a supermartingale w.r.t {F,} then E[X,|F,] < X,, whenever n > m
— If {X,} is a martingale w.r.t {F,} then {E[X,]} is constant.

— If {X,,} is a submartingale w.r.t {F,} then {E[X,]} is increasing.

— If {X,,} is a supermartingale w.r.t {F,} then {E[X,]} is decreasing.



e Convex transformation of martingale

— If {X,} is a martingale w.r.t {F,} and ¢ : R — R is a convex function s.t.
E|p(X,)| < oo Vn e N then {¢(X,)} is a submartingale w.r.t {F,}

— If {X,,} is a submartingale w.r.t {F,,} and ¢ : R — R is a convex and increasing function
s.t. Elo(X,)| < oo Vn €N then {¢(X,)} is a submartingale w.r.t {F,}

— If {X,} is a supermartingale w.r.t {F,} and ¢ : R — R is a concave and increasing
function s.t. E|¢(X,)] < oo Vn € N then {¢(X,,)} is a supermartingale w.r.t {F,}
Ex) If {X,} is a martingale and E[|X,,|P] < oo for some p > 1, then {|X,,|’} is a submartingale
Ex) If {X,} is a submartingale then for any a € R, {(X,, — a)*} is a submartingale
Ex)
)

Ex) If {X,} is a submartingale then {X,[} is a submartingale and {X,, } is a supermartingale

If {X,} is a supermartingale then for any a € R, {X,, A a} is a supermartingale

(
(
(
(

* Predicatable sequence and a process using it

— For a filtration {F,}2,, a random sequence { H,,}°° , is said to be a predicatable sequence
(wrt {F.}) it H, € F,my VneN
Vv A letter H stands for a ‘height’

— Suppose {X,,} is adapted to {F,}. For a predicatable sequence {H,} (w.r.t {F,}), we
define a process {(H - X),} by

= Z Hm(Xm - Xm—l)
m=1

v/ Note that {(H - X), } is adapted to {F,}

v/ The definition above can be extended from {(H - X), }nen to {(H - X)n}nenu oy with
additionally defining (H - X)o = 0 . Obviously (H - X)q € Fo . For the following
theorems using this process, we can regard it as {(H - X)n}neNu{O}

e Elementary facts about martingale transform with predicatable sequence

— Let {X,}>, and {H,}2, be a random sequence and {H,} is a predicatable sequence
w.r.t. a filtration {F,}>°,. Assume E|X, H,| < oo, E|X,-1H,| <o VneN
i. If {X,} is a martingale (w.r.t {F,}) then {(H - X),} is also a martingale
ii. If {X,} is a submartingale (w.r.t {F,}) and H, > 0 then {(H - X),} is also a
submartingale
iii. If {X,} is a supermartingale (w.r.t {F,}) and H, > 0 then {(H - X),} is also a
supermartingale
v/ The condition “E|X,H,| < oo, E|X,,_1H,| < oo ¥n € N” can be replaced with “For
each n € N, H,, is bounded”.

* Stopping time

— A (extended) random variable N taking values of NU {0, oo} is said to be a stopping time
(w.r.t a filtration {F,}) if an event (N =n) € F,, VneN

n

(N<n)=| J(N=j) eF, (N>n)=(N<n)cF,

.

ICliC

n—

(N<n)=| J(N=j)eF,, (N>n)=(N<n)¢eF,



— (N >n) is a F,,_j-measurable event. I(N > n) is F,_;-measurable random variable.
Hence, {I(N > n)}, is a predictable sequence given N is a stopping time.

e Martingale stopped by stopping time
— Let {X,,} be a random sequence adapted to {F,}. Let N be a stopping time w.r.t {F,}
and put H, =I(N >n) Vn&€N. Then (H - X), = Xy — Xo.

— The process {Xyan}n is said to be a martingale stopped by stopping time N | provided
{X,} is a martingale.

* If {X,} and {Y,,} are martingales (w.r.t. {F,}) then {X,, +Y,} is also a martingale.
The same holds for submartingales and supermartingales too.

— If {X,,} is a martingale and N is a stopping time then {Xya,} is martingale.
— If {X,,} is a submartingale and N is a stopping time then {Xxya,} is submartingale.

— If {X,,} is a supermartingale and N is a stopping time then {Xya,} is supermartingale.
e Stopping time and Upcrossing

— Suppose {X,}22 is a submartingale w.r.t {F,}. Let a < b. Define N;’s as below :

lelnf{mZOXmSa} szlnf{m>N1XmZb}
N3 =inf{m > N, : X, <a} Ny =inf{m > N3 : X,, > b}
NQk,1 = 1nf{m > Ngk,Q : Xm < a} Ngk = mf{m > Ngk,1 . Xm > b}
N> Ny
r ’
® L]
b °
L ]

‘¢ ¢ <\
N, N3 Ns

— Every Nj; for j € N is stopping time w.r.t {F,}. N; < Ny < N3--- provided all N;’s are
finite. (It is possible that N; = oo provided it has a form of inf(¢))

— ‘Upcrossing’ is a case where the submartingale {X,,} crosses from below a to above b.

— U, :=sup{k : Ny < n} is the number of upcommings completed by time n
e Upcrossing inequality

— Suppose {X,} is a submartingale w.r.t {F,}. If stopping time N; and the number of
upcrossings U,, are defined as above then

(b= a)E[U,] < E[(Xy = a)"] = E[(Xo — a)"]
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e Submartingale convergence theorem
— If {X,} is a submartingale w.r.t {F,} with sup,, E(X,) < co then X,, = X a.s. for some
integrable random variable X

% Trick : If X, - X a.s. then X,/ — XT a.s. and X;, — X~ a.s.

% Lemma : If the number of upcrossings of [a, b] by submartingale {X,,} is finite for any
a,b € Q, then lim,, X,, exists. i.e. X, converges to some r.v. almost surely.

O If { X, } is a nonnegative supermartingale w.r.t {F, } then X,, — X a.s. for some integrable
random variable X s.t. E(X) < E(Xy)

e Example of martingale which converges almost surely but not in L!

— (&}, did with P(6, = 1) = P(& = —1) = 1/2. Let Sy = 1, Sp = Su_y + &, and
Fo=A{0,Q}, Fo=0(&, -+ ,&,). Then {S,} is a martingale w.r.t {F,}
Let N =inf{n € N: S, = 0}. Then N is a stopping time.
X, := Syan s0 that X,, = S, if n < N and X,, = 0if n > N. {X,} is a nonnegative
integer valued martingale w.r.t {F,}. X, — 0 a.s. but X,, - 0 in L.

o If {X,}renugoy is a negative submartingale w.r.t {F,}renugoy then so is {X, }nenugo,cc) Wt
{Fntnenugo,00p Where Xoo = lim, X, and Foo = (T( U2, ]:n)

— If {X,, }nen is a martingale w.r.t {F, }peny and X,, = X a.s. then Xoo € Foo = o(U,, Fn)
e Doob’s decomposition

— Any submartingale {X,} can be written as X,, = M,, + A,, where {M,} is a martingale
and {A,} is a predictable increasing sequence with Ag = 0. Also, this expression is unique
in the sense that if X,, = M + A] is another expression then M,, = M) and A,, = A}, a.s.

v/ The exact form of M, A, for given X,, is A, = A,_1 + E[X,|Fn-1] — Xso1 Vn €N
and M, = X, — A, ¥neNU{0} (Since Ay =0, A, = 3" (E[Xp|Fi1] — Xi1) )

* Almost sure convergence on a restricted event

— Define “X,, — X a.s. on B” for measurable set B as
P((X, = X) N B) = P(B) or equivalently, P((X,, » X) N B) =0

% Lemma: X,, > X a.s.on B = X,, > X a.s. on A whenever A C B
* Lemma: X, - X as.on Ay VEEN = X, = X a.s. on oy Ak

e Martingales with bounded increments either converge or oscillate between oo and —oo

— Let {X,,} be a martingale with |X,, — X,, 1| < M < oo Vn €N for some M > 0.
Define disjoint subsets C, D C €2 by

C = (lim X, exists and — oo < lim X,, < 00 )
D = (limsup X,, = oo and liminf X,, = —oc0)
Then P(C U D) =1

e Conditional Borel-Cantelli second lemma



— Let {F.}nenuioy be a filtration with Fo = {¢,Q} . If A, € F,, Vn € N then

(A, i.0.) = (iP(An|fn_1) = oo) a.s.

% Define “A = B a.s.” for measurable sets A and B by P(AAB) = 0 where AAB
denotes the symmetric difference of two sets.

% > ., 14, is a submartingale whose martingale compoenent of Doob’s decomposition
is

n

n k k—1 n n
Z]Ak - Z (E[ZIA]'LF}C_l} - ZIA]-) = Z]Ak - ZP(Akl]:k—l)
k=1 j=1 j=1 k=1 k=1

k=1
and this is the martingale we exploit in the proof of conditional B-C 2nd lemma
* Trick : (A, i.0.) = (>, 14, = 0)
v/ Given {4, } is independent, by setting F,, = 0(A1,--- , A,), conditional Borel-Cantelli
second lemma implies original Borel-Cantelli second lemma which is given by

> P(A,) =00 = P(A, io)=1

* Branching process (Galton-Watson process)

— Let {£'}ien, nen be i.i.d nonnegative integer-valued random variables.
Define a Galton-Watson process {Z, }nenuio) as below :
ZO — 1

Z . = ?+1+---+€Z:1 :Z]Z21§;z+1 it Z,>0
n+l — 1
0 if Zn =0

v/ The idea behind the definitions is that Z, is the population in the n-th generation and
each member of the n-th generation gives birth independently to an identically distributed
number of offspring.

— P& =k) VEkeNU {0} is called the offspring distribution. p = E(&]) is the expected
number of offspring per individual.

e Properties of the branching process

—Let Fo=0c({{":ieN,1<m<n}) VneN, Fo={4Q}. If p=FE(&) € (0,00)
then {Z,,/u"} is a martingale w.r.t {F,} and E(Z,) = pu* VneN

— If u= E(&) € (0,1) then Z, = 0 for large enough n’s a.s. i.e. the species goes extinct.
e Inequality for bounded stopping time

— If {X,,} is a submartingale and N is a stopping time with P(N < K) =1 for some K € N
then
E(Xo) < E(Xy) < E(Xk)

v/ Since {X,} is a submartingale, F(X,) < E(X;) < E(Xk) whenever 0 < j < K . This
thm tells us that similar inequality still holds true when the index is random.
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O If {X,} is a martingale and N is a stopping time with P(N < K) = 1 for some K € N
then
E(Xy) = E(Xy) = E(Xk)

e Doob’s inequality

— Let {X,}nenuqoy be a submartingale. Take n € N and define X, = MaXo<men Xm-
Let A > 0 and define an event A = (X,, > A) . Then the inequality below holds true.

AP(A) < B[X,14] < E[X14] < E[X]

O Let { X, }nenugoy be a supermartingale. Take n € N and define X, = maxo<m<n Xm-
Let A > 0 and define an event A = (X, > A) . Then the inequality below holds true.

AP(A) < E[Xo] — E[X,Iac] < B[Xo] + E[X;]
v/ Note that P(A) involves maxo<m<, term while E[X ] or E[X ] only depends on n

e Doob’s L? maximal inequality

— If { X, }nenuoy 1s a nonnegative submartingale, then for 1 < p < oo and
X, = maXo<m<n Xm , the inequality below holds true.

PORT) < (L)

O If_{Xn}neNu{O} is a martingale then for 1 < p < oo and
| X | = maxo<m<n | Xin| , the inequality below holds true.

E[X,|P < (L)pE\m
p—1

* Lemma : If X >0 then E(X) = [[°P(X > t)dt
e [P convergence thm

— If {X,,} is a martingale with sup, E|X,|? < oo for some p > 1 then X,, - X a.s. and
X, — X in L? for some integrable r.v. X

v/ For a martingale convergence thm, the condition was sup,, £(X,) < oo
* Trick: a,b € Rand p > 1 = |a+ bP < 2P(Jal? + [b]P)

* o-field generated by a stopping time
— Let 7 be a stopping time w.r.t. a filtration {F,} . Then we define F, as the following :
F.={AeF:An(r=n)eF, VneN}

v/ Note that F, is indeed a o-field.
\/ T is Fr-measurable

Vv I {X,} is adapted to {F,} then X, is F,-measurable
e Bounded optional stopping thm

— Let {X,,} be a submartingale . Let o and 7 be two bounded stopping timess.t. 0 <7 < B
a.s. for some B € N. Then F[X,|F,] > X, a.s.
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vV X, = Zf:o X,nI(m =n) is well-defined and integrable.
v/ By defining property of submartingale, E[X,,|F,] > X,, V. m > n . The thm tells us
that this property is preserved even when indices are stopping times if they are bounded.
% Trick : For a random variable X and a o-field F ,
L. (X<a)eF VaeR=(XecA)ecF VAecBR)
ii. For Se F,(X<a)NSeF VaeR=(XecA)NSeF VAecBR)
% Lemma : For any F-measurable and integrable X and Y ,
i. IffAXdP:fAYdP VA € F then X =Y a.s.
il. IffAXdP < fAYdP VA € F then X <Y a.s.
* Lemma : {X,} is a submartingale wr.t {F,} = [, X,dP < [, X, 1dP Y AeF,

* Uniform integrability

— A collection of r.v.’s {X; : t € T'} is said to be uniformly integrable if

lim sup/ | X¢|dP = lim sup F|X|I(|X;| > a) =0
|X¢t|>a 40 teT

a—r 00 teT

v/ Denote it as {X;}ier w.i.

v/ A uniformly integrable family is well-controlled in the sense that if {X;}ier wu.i. then
M > 0s.t. sup,ep B| Xy < M +1< o0

V If {X;}ier is uniformly integrable then each X; is integrable .

If {X;}ier is dominated by a nonnegative integrable r.v. X ie. | X3 < X as. VteT
then {X;}ier is uniformly integrable.

% Lemma: If X is integrable then le|>a | X|dP = E|X|I(|X]|>a) —0asa— oo

Equivalent condition for uniform integrability

— { X, }ier is uniformly integrable iff both of two conditions below are satified.
i. sup, F|X;| < o0
ii. Ye> 0,36 >0s.t. sup, [, | X;|dP < e whenever A € F and P(A) <§

Elementary properties of uniform integrable family

— If {X, }nen and {Y}, }en are both uniformly integrable then {X,, + Y, }nen w.i.
— If |X,| <|Y.] VneNand {Y,}nen is uniformly integrable then {X,, }nen w.i.

Vitali’s lemma

— Forp>1,if{X,} C L? and X, L X then the followings are equivalent.

seq
i. {X,"}nen is uniformly integrable.
ii. Xel? and X,, » X in L?
iii. F|X,? — E|X|P < oo
% Lemma : For a r.v. Z, continuity set {z € R: P(Z = z) = 0} is dense in R

o If {X, }nen is uniformly integrable and X, 2 X then E|X,| — E|X| and E(X,) — E(X)

12



% Lemma : If Y,, - Y in L' then E|Y,| — E|Y| and E(Y,) — E(Y)
* Regular martingale and closable martingale

— Let {X,}nenuoy be a martingale.

i. {X,} is said to be regular if 3X € L' s.t. X,, = E[X|F,] a.s. VneN

ii. {X,} is said to be closable if 3 X, € L' s.t. X,, » X a.s., Xo € Fo Where
Fo =0(U, Fn) and E[X|F,] = X,, Vn € N so that
{ X0 tnenu 0,00} 15 @ martingale w.r.t {F, }nenu (0,00}
v/ Every closable martingale is regular.

e For a martingale { X, },.en, the followings are equivalent.

i. {X,} is regular.

ii. {X,} is uniformly integrable and converges a.s.
iii. {X,,} converges in L'
iv. {X,} is closable.

[0 For a martingale { X, },eny w.r.t {F, bnen

— If X, » X in L' then X,, - X a.s. and X,, = E[X|F,] VneN

— If {X,} is uniformly integrable then X,, — X a.s. for some integrable r.v. X and

X, = E[X|F,] VneN
— If X,, = E[X|F,] for some integrable r.v. X then {X,} is uniformly integrable and

3 integrable r.v. X € Fop s.t. E[X|F] =X, VneNand X,, » X, a.s. and in L.

Levy’s thm

— If {F,}nen is a filtration and F., = o(|J,, F» ) then for an integrable r.v. X,
E[X|F,] = E[X|Fx] a.s. and in L'.

Conditional DCT (generalized version)

— Let {F, }nen be a filtration and Foo = o(|J, Fn) . If X;, = X a.s. and |X,| < Z for
E

some integrable r.v. Z | then E[X,|F,] = E[X|F] a.s.

*

Potential

— A nonnegative supermartingale {X,,} is said to be potential if £(X,) — 0
v/ If {X,} is potential then {X,} is uniformly integrable and X,, — 0 a.s.

Riesz decomposition

— Let {X,} be a uniformly integrable nonnegative supermartingale. Then we can express
X, as X,, = M,,+V,, where {M,,} is uniformly integrable martingale and {V,,} is potential.
Furthermore, such decomposition is unique.

o If {X,} is uniformly integrable submartingale, then for any stopping time N, stopped process

{Xnnn} is also uniformly integrable submartingale.

* Lemma : If X,, - X a.s. then X, - X* a.s. and X, — X~ a.s.
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Inequality for unbounded stopping time

— If {X,,} is uniformly integrable submartingale then for any stopping time N, we have
E(Xy) < E(Xy) < E(X&) where X,, — X a.s.

O If {X,} is uniformly integrable martingale then for any stopping time N, we have
E(Xo) = E(Xy) = F(X) where X,, = X, a.s.

Optional stopping thm

— If L < M are stopping times and {X,,} is uniformly integrable submartingale then
E[XL] S E[XM] and XL S E[XM|./—"L] a.s.

Suppose {X,} is a submartingale and E[|Xn+1 — Xn”]-"n} < B as. VYVneN.If Nisa
stopping time with E(N) < oo then {Xya,} is unifomly integrable and E(X) < E(Xy)

v/ Note that F(N) < oo condition implies that N is almost surely finite.
% Lemma: F|X|<oco& ) P(X|>n) <o

If {X,,} is a nonnegative supermartingale and N is a stopping time then F(Xy) > E(Xy)

Comment for X with stopping time N and (sub)martingale {X,,}
— Xy =% X (N =n)

— Note that N can take value of N = oo . Thus, for X to make sense, N should be almost
surely bounded or X, is well-defined.

— If X, is well-defined such that X,, — X a.s. then Xyr, — Xy a.s.

— How can we figure out integrability of Xy 7

i. If N is bounded a.s.
- N <K a.s. for some K € N. Hence E|Xy| < Zf:o E|X,| <o
ii. If {X,} is uniformly integrable submartingale

- Xy = X a.s. = Xyan = Xy a.s. Since {Xyn,} is also uniformly integrable
submartingale, by Vitali lemma, Xy € L' i.e. Xy is integrable.

iii. If {X,,} is nonengative supermartingale

- X, = X a.s. = Xyan — Xy a.s. By inequality for bounded stopping time,
E[Xnan) < E[Xo] and using Fatou’s lemma, we have 0 < F[Xy| < F[X,] < 00

e Asymmetric simple random walk
— Let {&}ien be id.d. random seq. s.t. P(§; =1) =pand P(§; = —1) = ¢ =1—p for some
0<p<l1.5=0S5,=&&+-+& and F,=0(&,---&) VneN
i. For ¢ : R — R defined by ¢(x) = (52)" , {#/(S,)} is a martingale.

ii. Define T, = inf{n € N U {0} : S,, = m} for m € Z where inf(¢) is interpreted as co
For any a,b € Z s.t. a < 0 < b, we have

¥(b) —¥(0)
P(T,<Ty) =
To < T = 50— ta)
p>q=T, <o as , p<qgq=>T,<x as. , p=q=1T,,T,<oc0 a.s.
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iii. If p>¢q (p>3) then

1—p\
P(inf S, < a) = P(T, < o0) = (Tp) Va<0

b
= — b
E[T}) - Vb > 0

% Trick : For |r] <1, > 7, nr™ converges to a finite number r/(1 — r)?
e Square integrable Martingales

— Suppose {X,,} is a martingale with Xy = 0 and E[X?] < oo Vn €N

— Since X2 is a submartingale, we can find X2 = M, + A,, which is a Doob’s decomposition
for X2. Here, A, is called the increasing process associated with X,

An =Y E[X}|Fia] = X7 =) E[(Xp — X41)?| Faea]  with Ag =0
k=1 k=1

— Since A, is increasing, A, = lim, A, = sup,, A,, exists.

— A, can be though of as a path by path measurement of the variance at time n and A,
can be viewed as the total variance in the path.

— A, is integrable and E[X?] = E[A,] VneN

— Two results about boundedness

El[sup X?] < 4E[Ay] and E[sup|X,|] < 3E[v/As]

— Two results about convergence

i. X, converges to a finite limit a.s. on (Ay < 00)

% Trick : If N is a stopping time , then Xy, is a square integrable martingale and
Apnnan is the increasing process associated with Xy,

ii. If f : R — R be an increasing function with f(t) > 1V¢ € R and [;°1/f%(t)dt < oo
then X,,/f(A,) — 0 a.s. on (Ax = 00)

% Trick : For such function f , we have f(t) / oo ast — oo

* Lemma : [Kronecker’s lemma] If 0 < a,, /00 and Y | L, converges
then =37 2, — 0

e Conditional Borel-Cantelli second lemma (2nd version)

— Suppose B, € F,, Vn e Nand Fy={¢,Q} . Let p, = P(B,|Fn-1) ¥n € N. Then

%%1 a.s. on (an:oo)
m=14tm n

v/ This extends the original Borel-Cantelli second lemma .
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e Buckholder’s inequality

— Suppose {S; }o<i<n is a martingale with Sy = 0 . Let X; = S; — S;_1 be a ‘martingale
difference’ . Then for 1 < p < oo , d¢; and ¢y depending only on p such that

e B Y XEP < BIS, P <o B X

i=1 i=1

In fact, ¢; = (18p/2¢)™ and ¢y = (18pq'/?)? where ¢ is Holder conjugate of p

v/ We can handle martingale with squared sum of martingale difference sequences.

[ Marcinkiewicz-Zygmund inequality

— Suppose X;’s are i.i.d. random variables with E[X;] = 0 and E|X;|” < oo for some p > 1
. Let S, = X1+ .-+ X,, (S, is a martingale w.r.t. F, = o(Xy,---,X,) ). Then we
have

1Sally < 18¢"2pv/n| Xl

with ¢ being Holder conjugate of p

e Uniform integrability of moments of sample mean

— If {X,} is a seq. of i.i.d. random variables with mean 0 and variance 1 and F|X;| < oo
for some r > 1 then

T}
neN

{55~

is uniformly integrable.

v/ Combining this thm with CLT and Vitalli lemma, we can obtain that under the same
assumption,

T

— E|Z|"

1 n
El-—=Y "X,
X

1=

where Z ~ N(0,1)

3 Infinitely Divisible Distribution

* Definition of infinitely divisible distributions

— A distribution F is called inifinitely divisble if one of these equivalent conditions are
satisfied.

i.

11.

iii.

For each n € N, 3 a distribution F,, s.t. F' = F,, x F,, x --- x I}, where x denotes the
convolution

There is a probability space (2, F, P) , a random variable X , and a double array
{Xur : k=1,---n} such that

X~F and X % F, with X2X,+--+X,, VneN
For each n € N | 34 a distribution F,, s.t.
Vr = (Yr,)"

where 1) denotes the characteristic function of the distribution G
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— We will say a characteristic function %) is infinitely divisible if it is a characteristic function
of inifinite divisble distribution F

e For any characteristic function ¢ , we have
1—[p2t)] <41 - [p@)*) Vi

e If ¢ is inifinitely divisble characteristic function then v (t) # 0 for any ¢t € R
e Canonical representation of infinitely divisble characteristic function

— Let u be a finite measure in (R, B(R)) . Define ¢ as

st =ew ([~ )

[e.9]

Then v is a characteristic function of an infinite divisible distribution with mean 0 and
variance p(R) .

— This is called canonical representation of 1) and p is called a canonical measure.
e condition R of a row-wise independent double array

— A row-wise independent double array {X,x : 1 < k < rn}n is said to satisfy condition R if
i. BE(Xu) =0,E[X2] =07 <0085 =Y 00 >
ii. sup, s2 < oo

lil. maxj<g<,, 02, — 0
e If X and Y are independent and E[(X +Y)?] < oo then E[X?] + E[Y?] < o0

e Every inifinite divisble distribution F with mean 0 and finite variance o2 is the limit distribution
of S, = X1 + - -+ + X, for some row-wise independent double array {X,;} satisfying
condition R . In fact, if double array {X,; : k = 1,--- ,n}, is associated with infinite divisble
distribution F' then it satisfies stronger condition than condition R

e Infinite divisible distribution has a canonical representation .

— If F'is the limit distribution of S,, = X,,; + - - - X,,,, for some row-wise independent double
array {X,x : k= 1,--- ,n} satisfying condition R then F' has the characteristic function
v with canonical representation

— By the theorem above, if F' is an infinite divisble distribution with mean 0 and finite
variance o2 then it has canonical representation.
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